

Calculating AC Current Density

Michael Plaster

Holiday

- Why does AC matter?
- AC Coupon Sizes
- AC current density with Bullhorn / RM4210/4250
- Manually calculating AC current density (with a Triton & Coupon)

Why Should I Care About AC?

AC Corrosion:

 Prolonged AC interference can lead to rapidlyaccelerated corrosion on your pipeline

Coating & Pipeline Damage

• Exposure to unmitigated AC stray currents can cause damage to coatings & metal loss

Safety Hazards:

 High induced AC voltage present a shock hazard to pipeline personnel

Regulation

• PHMSA 192.473 (Mega Rule) has been modified and references AC interference

PHMSA Regulations

- Each operator whose pipeline system is subjected to stray currents shall have in effect a continuing program to minimize the detrimental effects of such currents. (PHMSA 192.473a)
- Development of a remedial action plan to correct any instances where interference current is greater than or equal to 100 amps per meter squared (AC) or if it impedes the safe operation of a pipeline, or if it may cause a condition that would adversely impact the environment or the public; (PHMSA 192.473c3)

Remote Monitor

Manual Calculation of AC Current Density –

The most common question to support on our AC monitors

How do Finstall my remote monitor?

How do I take a manual read for AC Current Density?

AC Coupons: Tiny but Mighty!

AC Coupon Sizes

• 1cm²

- 10cm²
- 1.4in²
- Which size do we use?

AC Testing

AC Testing

0 * -	((%))
Power	
 Battery Status Battery Voltage 	OK 0.86 V
Readings	
O 1 2 Test Cpn AC Current Density	Scaling >
• 1 2 Test Cpn DC Current Density	0.0117 A/m² >
• 1 2 Triton AC Current Density	0.29 A/m 2 $>$
• 1 2 Test Cpn AC P/S	1.326575 V $>$
• 1 2 Test Cpn DC P/S	-2.039706 V $>$
• 1 2 Native P/S	-0.170488 V >
• 1 2 Test Cpn Instant Off	-0.970599 V $>$
1 2 AC Drain Current	0.004938 A >

Taking a manual AC reading on a Triton Coupon Test Station

- Disconnect the RMU
- Plug DVM into AC Coupon & Structure
- Flip the Switch to open
 - Avoids interference from DC Test
 Coupon
- Know your coupon size

Manual Calculation of AC Current Density – 1cm²

Manual Read: 27 mA Coupon Size: 1cm²

Formula: $\left(\frac{Current}{Coupon \ Size}\right) * \left(\frac{1A}{1A}\right) * \left(\frac{100 \ cm2}{1 \ m2}\right) = \text{Reading } \frac{A}{m^2}$ 1. $\left(\frac{27mA}{1 \ cm2}\right) * \left(\frac{1A}{1000 \ mA}\right) * \left(\frac{100 \ cm}{1 \ m}\right) * \left(\frac{100 \ cm}{1 \ m}\right) = (X) \frac{A}{m^2}$ 2. $\left(\frac{27}{1}\right) * \left(\frac{1}{1000}\right) * \left(\frac{100}{1}\right) * \left(\frac{100}{1}\right) = (X) \frac{A}{m^2}$ 3. $\left(27(\frac{10000}{1000})\right) = (X) \frac{A}{m^2}$ 4. $27*10 = \mathbf{270} \frac{A}{m^2}$

Manual Calculation of AC Current Density – 10cm²

Manual Read: 27 mA Coupon Size: 10cm²

Formula: $\left(\frac{Current}{Coupon \ Size}\right) * \left(\frac{1A}{1A}\right) * \left(\frac{100 \ cm2}{1 \ m2}\right) = \text{Reading } \frac{A}{m^2}$ 1. $\left(\frac{.027A}{10 \ cm2}\right) * \left(\frac{1A}{1A}\right) * \left(\frac{100 \ cm}{1 \ m}\right) * \left(\frac{100 \ cm}{1 \ m}\right) = (X) \frac{A}{m^2}$ 2. $\left(\frac{.027}{10}\right) * \left(\frac{1}{1}\right) * \left(\frac{100}{1}\right) * \left(\frac{100}{1}\right) = (X) \frac{A}{m^2}$ 3. $\left(.0027(\frac{10000}{1})\right) = (X) \frac{A}{m^2}$ 4. $.0027*10000 = \mathbf{27} \frac{A}{m^2}$

Manual Calculation of AC Current Density – 1.4in²

Manual Read: 27 mA Coupon Size: 1.4in²

Formula:
$$\left(\frac{Current}{Coupon Size}\right) * \left(\frac{1A}{1000mA}\right) * \left(\frac{100cm2}{1m2}\right) = AC$$
 Current density $\frac{A}{m^2}$

1. Convert your coupon from inches to $cm : 1.4in^2 = 9.032cm^2$

(2.989 * 10)= **29.89A/m²**

$$2.\left(\frac{27mA}{9.032cm^2}\right)*\left(\frac{1A}{1000mA}\right)*\left(\frac{100cm}{1m}\right)*\left(\frac{100cm}{1m}\right)=(X)\frac{A}{m^2}$$

3. $\left(\frac{27}{9.032}\right) * \left(\frac{1A}{1000}\right) * \left(\frac{100}{1m}\right) * \left(\frac{100}{1m}\right) = (X) \frac{A}{m^2}$

4.
$$(2.989) * \left(\frac{10000}{1000}\right) = (X) \frac{A}{m^2}$$

Manual Calculation of AC Current Density – Simplify

Manual Read: 27 mA

Coupon Size: 1cm² 27 * 10 = **270** $\frac{A}{m^2}$ Coupon Size: 10cm² 27 = **27** $\frac{A}{m^2}$ Coupon Size: 1.4in² $\left(\frac{27}{9.032}\right) * 10$ = **29.89** $\frac{A}{m^2}$

Conclusion

- 1) Start by checking the read on the RMU with Bullhorn Tools
- 2) Directly taking the reading off the Triton Coupon helps eliminate IR errors.
- 3) Flipping the switch to the open position helps eliminate DC interference.
- 4) Knowing your coupon size is very important.

